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ABSTRACT
Efficient storage and querying of RDF data is of increasing impor-
tance, due to the increased popularity and widespread acceptance
of RDF on the web and in the enterprise. In this paper, we describe
a novel storage and query mechanism for RDF which works on top
of existing relational representations. Reliance on relational repre-
sentations of RDF means that one can take advantage of 35+ years
of research on efficient storage and querying, industrial-strength
transaction support, locking, security, etc. However, there are sig-
nificant challenges in storing RDF in relational, which include data
sparsity and schema variability. We describe novel mechanisms
to shred RDF into relational, and novel query translation tech-
niques to maximize the advantages of this shredded representation.
We show that these mechanisms result in consistently good per-
formance across multiple RDF benchmarks, even when compared
with current state-of-the-art stores. This work provides the basis
for RDF support in DB2 v.10.1.

Categories and Subject Descriptors
H.2 [Database Management]: Systems
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1. INTRODUCTION
While the Resource Description Framework (RDF) [14] format

is gaining widespread acceptance (e.g., Best Buy [3], New York
Times [18]), efficient management of RDF data is still an open prob-
lem. In this paper, we focus on two aspects of efficiency, namely,
storage and query evaluation. Proposals for storage of RDF data can
be classified into two categories, namely, Native stores (e.g., Jena
TDB [23], RDF-3X [13], 4store [1]) which use customized binary
RDF data representations, and Relationally-backed stores (e.g., Jena
SDB [23], C-store [2]) which shred RDF data to appropriate rela-
tional tables. While there is evidence that going native pays in
terms of efficiency, we cannot completely disregard relationally-
backed stores. For one thing, relational stores come with 35+ years
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of research on efficient storage and querying. More importantly,
relational-backed stores offer important features that are mostly
lacking from native stores, namely, scalability, industrial-strength
transaction support, compression, security, to name a few. How-
ever, there are important challenges in using a relational database
as an RDF store, the most important of which stem from the inherent
mismatch between the relational and RDF models. Dynamic RDF
schemas and data sparsity are typical characteristics of RDF data
which are not commonly associated with relational databases. So,
it is not a coincidence that existing approaches that store RDF data
over relational stores [2,21,23] cannot handle this dynamicity with-
out altering their schemas. More importantly, existing approaches
cannot scale to large RDF stores and cannot handle efficiently many
complex queries. Our first contribution is an innovative relational
storage representation for RDF data that is both flexible (it does not
require schema changes to handle dynamic RDF schemas), and scal-
able (it handles efficiently the most complex queries).

Efficient querying is our next contribution, with the query lan-
guage of choice in RDF currently being SPARQL [16]. Although
there is a large body of work in query optimization (both in
SPARQL [8,11,13,17,19] and beyond), there are still important chal-
lenges in terms of (a) SPARQL query optimization, and (b) trans-
lation of SPARQL to equivalent SQL queries. Typical approaches
perform bottom-up SPARQL query optimization, i.e., individual
triples [17] or conjunctive SPARQL patterns [13] are independently
optimized, and then the optimizer orders and merges these indi-
vidual plans into one global plan. These approaches are similar
to typical relational optimizers which rely on statistics to assign
costs to query plans (in contrast to approaches [19] where statis-
tics are ignored). While these approaches are adequate for sim-
ple SPARQL queries, they are not as effective for more compli-
cated, but still common, SPARQL queries, as we illustrate in this
paper. Such queries often have deep, nested sub-queries whose
inter-relationships are lost when optimizations are limited by the
scope of single triple or individual conjunctive patterns. To address
such limitations, we introduce a hybrid two-step approach to query
optimization. As a first step, we construct a specialized structure,
called a data flow, that captures the inherent inter-relationships due
to the sharing of common variables or constants of different query
components. These inter-relationships often span the boundaries
of simple conjuncts (or disjuncts) and are often across the differ-
ent levels of nesting of a query, i.e., they are not visible to existing
bottom-up optimizers. As a second step, we use the data flow and
cost estimates to decide both the order with which to optimize the
different query components, and the plans we are to consider.

While our hybrid optimizer searches for optimal plans, this
search must be qualified by the fact that our SPARQL queries must be
converted to SQL. That is, our plans should be such that when they



are implemented in SQL, they are (a) amenable to optimizations by
the relational query engine; and (b) can be efficiently evaluated in
the underlying relational store. So in our setting, SPARQL acts as
a declarative query language that is optimized, while SQL becomes
a procedural implementation language for our plans. This depen-
dence on SQL essentially transforms our problem from a purely
query optimization problem into a combined query optimization
and translation problem. The translation part is particularly com-
plex since there are many equivalent SQL queries that implement
the same SPARQL query plan. Consistently finding the right SQL
query is one of the key challenges and contributions of our work.

Note that both the hybrid optimization and the efficient SPARQL-
to-SQL translation are contributions that are not specific to our
work, and both techniques are generalizable and can be applied
in any SPARQL query evaluation system. So our hybrid optimizer
can be used for SPARQL query optimization, independent of the se-
lected RDF storage (with or without a relational back-end); our ef-
ficient translation of SPARQL to SQL can be generalized and used
for any relational storage configuration of RDF (not just the one we
introduce here). The combined effects of these two independent
contributions drive the performance of our system.

The effectiveness of both our optimizer and our relational back-
end are illustrated through detailed experiments. There has been
lots of discussion [6, 9] as to what is a representative RDF dataset
(and associated query workload) for performance evaluation. Dif-
ferent papers have used different datasets with no clear way to cor-
relate results across works. To provide a thorough picture of the
current state-of-the-art, and illustrate the novelty of our techniques,
we provide as our last contribution an experimental study that con-
trasts the performance of five systems (including ours) against four
different (real and benchmark) data sets. Our work provides the
basis for RDF support in DB2 v.10.1.

2. RDF OVER RELATIONAL
There have been many attempts to shred RDF data into the rela-

tional model. One approach involves a single triple-store relation
with three columns, for the subject, predicate and object. Then,
each RDF triple becomes a single tuple, which for a popular dataset
like DBpedia results in a relation with 333M tuples (one per RDF
triple). Figure 1(a) shows a sample of DBpedia data, used as our
running example. The triple-store can deal with dynamic schemas
since triples can be inserted without a priori knowledge of RDF
data types. However, efficient querying requires specialized tech-
niques [13]. A second alternative is a type-oriented approach [23]
where one relation is created for each RDF data type. So, for our
data in Figure 1(a), we create one relation for people (e.g., to store
Charles Flint triples) and another for companies (e.g., to store Google
triples). Dynamic schemas require schema changes as new RDF
types are encountered, and the number of relations can quickly get
out of hand if one considers that DBpedia includes 150K types.
Finally, a third alternative [2, 21] considers a predicate-oriented
approach centered around column-stores where a binary subject-
object relation is created for each predicate. So, in our example,
we create one relation for the born, one for the died predicate etc.
Similar to the type-oriented approach, dynamic schemas are prob-
lematic as new predicates result in new relations, and in a dataset
like DBpedia these can number in the thousands. In what follows,
we introduce a fourth entity-oriented alternative which avoids both
the skinny relation of the first approach, and the schema changes
(and thousands of relations) required by the latter two.

2.1 The DB2RDF schema
The triple-store offers flexibility in the tuple dimension since

new triples irrespectively of type or predicate are added to the rela-
tion. The intuition behind our entity-oriented approach is to carry
this flexibility in the column dimension. Specifically, the lesson
learned from the latter two alternatives is that there is value in stor-
ing objects of the same predicate in the same column. So, we in-
troduce a mechanism in which we treat the columns of a relation as
flexible storage locations that are not pre-assigned to any predicate,
but predicates are assigned to them dynamically, during insertion.
The assignment ensures that a predicate is always assigned to the
same column or more generally the same set of columns.

We describe the basic components of DB2RDF schema in Fig-
ure 1. The Direct Primary Hash (DPH) (shown in Figure 1(b) and
populated with the data from Figure 1(a)) is the main relation in the
schema. Briefly, DPH is a wide relation in which each tuple stores a
subject s in the entry column, with all its associated predicates and
objects stored in the predi and vali columns 0 ≤ i ≤ k, respec-
tively. If subject s has more than k predicates, i.e., |pred(s)| > k,
then ((|pred(s)|/k) + 1) tuples are used for s, i.e., the first tuple
stores the first k predicates for s, and s spills (indicated by the spill
column) into a second tuple and the process continues until all the
predicates for s are stored. For example, all triples for Charles Flint in
Figure 1(a) are stored in the first DPH tuple, while the second DPH
tuple stores all Larry Page triples. Assuming more than k predicates
for Android, the third DPH tuple stores the first k predicates while
extra predicates, like graphics, spill into the fourth DPH tuple.

Multi-valued predicates require special treatment since their
multi-values (objects) cannot fit into a single vali column. There-
fore, we introduce a second relation, called the Direct Secondary
Hash (DS). When storing a multi-valued predicate in DPH, a new
unique identifier is assigned as the value of the predicate. Then, the
identifier is stored in the DS relation and is associated with each of
predicate values. To illustrate, in Figures 1(b) and (c), the industry
for Google is associated with lid:1 in DPH, while lid:1 is associated
in the DS relation with object values Software and Internet.

Note that although a predicate is always assigned to the same
column (for any subject having this predicate), the same column
stores multiple predicates. So, we assign the founder predicate to
column pred3 for both the Charles Flint and the Larry Page subjects,
but the same column is also assigned to predicates like kernel and
graphics. Having all the instances of a predicate in the same column
provides us with all the advantages of traditional relational repre-
sentations (i.e., each column stores data of the same type) which
are also present in the type-oriented and predicate-oriented repre-
sentations. Storing different predicates in the same column leads to
significant space savings since otherwise we would require as many
columns as predicates in the data set. In this manner, we use a rel-
atively small number of physical columns to store datasets with a
much larger number of predicates. This is also consistent with the
fact that although a dataset might have a large number of predicates,
not all subjects instantiate all predicates. So, in our sample dataset,
the predicate born is only associated with subjects corresponding to
humans, like Larry Page, while the founded predicate is associated only
with companies. Of course, a key question is how exactly we do
this assignment of predicates to columns and how we decide this
value k. We answer this question in the Section 2.2 and also pro-
vide evidence that this idea actually works in practice.

From an RDF graph perspective, the DPH and DS relations es-
sentially encode the outgoing edges of an entity (the predicate from
a subject). For efficient access, it is advantageous to also encode
the incoming edges of an entity (the predicates to an object). To
this end, we provide two additional relations, called the Reverse



(Charles Flint, born, 1850)
(Charles Flint, died, 1934)
(Charles Flint, founder, IBM)
(Larry Page, born, 1973)
(Larry Page, founder, Google)
(Larry Page, board, Google)
(Larry Page, home, Palo Alto)
(Android, developer, Google)
(Android, version, 4.1)
(Android, kernel, Linux)
(Android, preceded, 4.0)
. . .
(Android, graphics, OpenGL)
(Google, industry, Software)
(Google, industry, Internet)
(Google, employees, 54,604)
(Google, HQ, Mountain View)
(IBM, industry, Software)
(IBM, industry, Hardware)
(IBM, industry, Services)
(IBM, employees, 433,362)
(IBM, HQ, Armonk)

(a) Sample DBpedia data

entry spill pred1 val1 pred2 val2 pred3 val3 . . . predk valk
Charles Flint 0 died 1934 born 1850 founder IBM . . . null null
Larry Page 0 board Google born 1973 founder Google . . . home Palo Alto
Android 1 developer Google version 4.1 kernel Linux . . . preceded 4.0
Android 1 null null null null graphics OpenGL . . . null null
Google 0 industry lid:1 employees 54,604 null null . . . HQ Mtn View
IBM 0 industry lid:2 employees 433,362 null null . . . HQ Armonk

(b) Direct Primary Hash (DPH)

l_id elm
lid:1 Software
lid:1 Internet
lid:2 Software
lid:2 Hardware
lid:2 Services

(c) Direct Secondary Hash (DS)

entry spill pred1 val1 . . . predk′ valk′
1850 0 born Charles Flint . . . null null
1973 0 born Larry Page . . . null null
1934 0 null null . . . died Charles Flint
IBM 0 null null . . . founder Charles Flint

. . .
Software 0 industry lid:3 . . . null null
Hardware 0 industry lid:4 . . . null null

(d) Reverse Primary Hash (RPH)

l_id elm
lid:3 IBM
lid:3 Google
lid:4 IBM
lid:4 Google

(e) Reverse
Secondary
Hash (RS)

Figure 1: Sample DBpedia RDF data and the corresponding DB2RDF schema

Predicate Set Freq.
SV1 SV2 SV3 SV4 .01MV1 MV2 MV3 MV4

SV1 SV2 SV3 .24MV1 MV2 MV3

SV1 SV3 SV4 .25MV1 MV3 MV4

SV2 SV3 SV4 .25MV2 MV3 MV4

SV1 SV2 SV4 .24MV1 MV2 MV4

SV5 SV6 SV7 SV8 .01

Table 1: Micro-Bench
Characteristics

Query Star query predicate set Results
Q1 SV1 SV2 SV3 SV4 938
Q2 MV2 MV2 MV3 MV4 10313

Q3 SV1 10313MV1 MV2 MV3 MV4

Q4 SV1 SV2 10313MV1 MV2 MV3 MV4

Q5 SV1 SV2 SV3 10313MV1 MV2 MV3 MV4

Q6 SV1 SV2 SV3 SV4 10313MV1 MV2 MV3 MV4

Q7 SV5 2500
Q8 SV5 SV6 2500
Q9 SV5 SV6 SV7 2500
Q10 SV5 SV6 SV7 SV8 2500

Table 2: Micro-Bench Queries

Primary Hash (RPH) and the Reverse Secondary Hash (RS), with
samples shown in Figures 1(d) and (e).

Advantages of DB2RDF Layout.
An advantage of the DB2RDF schema is the elimination of joins

in star queries (i.e., queries that ask for multiple predicates for the
same subject or object). Star queries are quite common in SPARQL
workloads, and complex SPARQL queries frequently contain sub-
graphs that are stars. Star queries can involve purely single valued
predicates, purely multi-valued predicates, or a mix of both. While
for single valued predicates the DB2RDF layout reduces star query
processing to a single row lookup in the DPH relation, processing
of multi-valued or mixed stars requires additional joins with DS
relation. It is unclear how these additional joins impact the perfor-
mance of DB2RDF when compared to the other types of storage.

To this end, we designed a micro benchmark that contrasts query
processing in DB2RDF with the triple-store and predicate-oriented
approaches1. The benchmark has 1M RDF triples with the char-
acteristics defined in Table 1. Each table row represents a predi-
cate set along with its relative frequency distribution in the data.
So, subjects with the predicate set {SV1, SV2, SV3, SV4, MV1,
MV2, MV3, MV4 } (first table row) constituted 1% of the 1 million
dataset. The predicates SV1 to SV8 were all single valued, whereas
MV1 to MV4 were multi-valued. The predicate sets are such that
a single valued star query for SV1, SV2, SV3 and SV4 is highly se-
lective but only when all four predicates are involved in the query.

1We omitted the type-oriented approach because for this micro-benchmark it is similar
to the entity-oriented approach.

SELECT ?s WHERE { ?s SV1 ?o1 . ?s SV2 ?o2 . ?s SV3 ?o3 . ?s SV4 ?o4 }

(a) SPARQL for Q1

SELECT T.entry FROM DPH AS T
WHERE T.PRED0=’SV1 ’ AND T.PRED1=’SV2 ’ AND T.PRED2=’SV3 ’ AND T.PRED3=’SV4 ’

(b) Entity-oriented SQL

SELECT T1.SUBJ FROM TRIPLE AS T1, TRIPLE AS T2, TRIPLE AS T3, TRIPLE AS T4
WHERE T1.PRED=’SV1 ’ AND T2.PRED=’SV2 ’ AND T3.PRED=’SV3 ’ AND T4.PRED=’SV4 ’ AND

T1.SUBJ = T2.SUBJ AND T2.SUBJ = T3.SUBJ AND T3.SUBJ = T4.SUBJ

(c) Triple-store SQL

SELECT SV1.ENTRY FROM COL_SV1 AS SV1, COL_SV2 AS SV2, COL_SV3 AS SV3, COL_SV4 AS SV4
WHERE SV1.ENTRY = SV2.ENTRY AND SV2.ENTRY = SV3.ENTRY AND SV3.ENTRY = SV4.ENTRY

(d) Predicate-oriented SQL

Figure 2: SPARQL and SQL queries for Q1

The predicates by themselves are not selective. Similarly, a multi-
valued star query for MV1, MV2, MV3 and MV4 is selective, but
only if it involves all four predicates. We also consider a set of se-
lective single valued predicates (SV5 to SV8) to separately examine
the effects of changing the size of a highly selective single valued
star on query processing, while keeping the result set size constant.

Table 2 shows the predicate sets used to construct star queries.
Figure 2(a) shows the SPARQL star query corresponding to the pred-
icate set for Q1 in Table 2. For each constructed SPARQL query, we
generated three SQL queries, one for each of the DB2RDF, triple-
store, and predicate-oriented approaches (see Figure 2 for the SQL
queries corresponding to Q1). In all three cases, we only index
subjects, since the queries only join subjects. Q1 examines single
valued star query processing. As shown in Figure 3, DB2RDF was
12X faster than the triple-store, and 3X faster than the predicate-
oriented store (78, 940, and 237 ms respectively). Q2 data shows
that this result extends to multi-valued predicates, because of the
selectivity gain. DB2RDF outperformed the triple-store by 9X and
the predicate-oriented store by 4X (124, 1109 and 426 ms respec-
tively). Q3-Q6 show that the result extends to mixed stars of single
and multi-valued predicates, with query times significantly worsen-
ing with increased number of conjuncts in the query for the triple-
store (1287-1850 ms), while times in the predicate-oriented store
show noticeable increases (514-614 ms). In contrast, DB2RDF
query times are stable (131-139 ms). Q7-Q10 show a similar trend
in the single valued star query case, when any one of the pred-
icates in the star is selective (66-73 ms for DB2RDF, 203-249 for
triple-store, and 2-6 ms in the predicate-oriented store). When each
predicate involved in the star was highly selective, the predicate-
oriented store outperformed DB2RDF. However, DB2RDF is more



0	
  

200	
  

400	
  

600	
  

800	
  

1000	
  

1200	
  

1400	
  

1600	
  

1800	
  

2000	
  

Q1	
   Q2	
   Q3	
   Q4	
   Q5	
   Q6	
   Q7	
   Q8	
   Q9	
   Q10	
  

Ti
m
e	
  
(in

	
  m
ill
is
ec
on

ds
)	
  

Queries	
  

En*ty-­‐oriented	
   Triple-­‐store	
   Predicate-­‐oriented	
  

Figure 3: Schema micro-bench results

stable across different conditions (all 10 queries), whereas the per-
formance of the predicate-oriented store depends on predicate se-
lectivities and fluctuates significantly. Overall, these results sug-
gest that DB2RDF has significant benefits for processing generic
star queries. Beyond star queries, in Section 4 we show that for
a wide set of datasets and queries, DB2RDF is significantly better
when compared to existing alternatives.

2.2 Predicate-to-Column assignment
The key to entity-oriented storage is to fit (ideally) all the predi-

cates for a given entity on a single row, while handling the inherent
variability of different entities. Because the maximum number of
columns in a relational table is fixed, the goal is to dynamically as-
sign each predicate of a given dataset to a column such that:
1. the total columns used across all subjects is minimized.
2. for a subject, mapping two different predicates into the same
column (assignment conflict) is minimized to reduce spills, since
spills cause self-joins, which in turn degrades performance2.

At an abstract level, a predicate mapping is simply a function
that takes an arbitrary predicate p and returns a column number.

Definition 2.1 (Predicate Mapping). A Predicate Mapping is a
function URI → N the domain of which is URIs of predicates
and the range of which is natural numbers between 0 and an
implementation-specified maximum m. Since these mappings are
assigning predicates to columns in a relational store, m is typically
chosen to be the largest containable on a single database row.

A single predicate mapping function is not guaranteed to mini-
mize spills in predicate insertion, i.e., the mapping of two different
predicates of the same entity into the same column. Hence, we
introduce predicate mapping compositions to minimize conflicts.

Definition 2.2 (Predicate Mapping Composition). A Predicate
Mapping Composition, written fm,1 ⊕ fm,2 ⊕ . . .⊕ fm,n, defines
a new predicate mapping that combines the column numbers from
multiple predicate mapping functions f1, . . . fn:

fm,1 ⊕ fm,2 ⊕ . . .⊕ fm,n(p) ≡ {v1, . . . , vn |fm,i(p) = vi }

A single predicate mapping function assigns a predicate in ex-
actly one column; so data retrieval is more efficient. However, there
are greater possibilities for conflicts, which would force self-joins
to gather data across spill rows for the same entity. When pred-
icate composition is used, then the implementation must select a
column number in the sequence for predicate insertion and must
potentially check all those columns when attempting to read data.
This can negatively affect data retrieval, but could reduce conflicts
in the data, and eliminate self-joins across multiple spill rows.

We describe two varieties of predicate mapping functions, de-
pending upon whether, or not, a sample of the dataset is available
2The triple store illustrates this point clearly since it can be thought of as a degenerate
case of R2DF that uses a single predi, vali column pair and where naive evaluation of
queries always requires self-joins.

(e.g., due to an initial bulk load, or in the process of data reorgani-
zation). If no such sample is available, we use a hash function based
on the string value of any URI; when such a sample is available, we
exploit the structure of the data sample using graph coloring.

Hashing.
A straightforward implementation of Definition 2.1 is a hash

function hm computed on the string value of a URI and restricted
to a range from 0 to m. To minimize spills, we compose n inde-
pendent hashing functions to provide the column numbers

hn
m ≡ hm1 ⊕ hm2 ⊕ . . .⊕ hmn

To illustrate how composed hashing works, con-
sider the Android triples in Figure 1(a) and the two hash

predicate h1 h2

developer 1 3
version 2 1
kernel 1 3
preceeded k 1
graphics 3 2

Table 3: Hashes

functions in Table 3. Further assume
these triples are inserted one-by-one, in
order, into the database. The first triple
(Android, developer, Google) creates a new tu-
ple for subject Android and predicate
developer is inserted into pred1, since h1

puts it there and the column is currently
empty. The next triple, (Android, version, 4.1), inserts in the same tuple
predicate version in pred2. The third triple, (Android, kernel, Linux), is
mapped to pred1 by h1, but the column is full, so it is inserted into
pred3 by h2. (Android, preceded, 4.0) is inserted into predk by h1. Fi-
nally, (Android, graphics, OpenGL) is mapped to column pred3 by h1 and
pred2 by h2; however, both of these locations are full. Thus, a spill
tuple is created which results in the layout shown in Figure 1(b).

Graph Coloring.
When a substantial dataset is available (say, from bulk loading),

we exploit the structure of the data to minimize the number of to-
tal columns and the number of columns for any given predicate.
Specifically, our goal is to ensure that we can overload columns
with predicates that do not co-occur together, and assign predicates
that do co-occur together to different columns. We do that by cre-
ating an interference graph from co-occurring predicates, and use
graph coloring to map predicates to columns.

Definition 2.3 (Graph Coloring Problem). A graph coloring prob-
lem is defined by an interference graph G =< V,E > and a set
of colors C. Each edge e ∈ E denotes a pair of nodes in V that
must be given different colors. A coloring is a mapping that as-
signs each vertex v ∈ V to a color different from the color of any
adjacent node; note that a coloring may not exist if there are too
few colors. More formally,

M(G,C) =

〈v, c〉
∣∣∣∣∣∣
v ∈ V ∧
c ∈ C∧
(〈vi, ci〉 ∈M ∧ 〈v, vi〉 ∈ E → c 6= ci)


Minimal coloring would be ideal for predicate mapping, but to

be useful the coloring must have no more colors than the maximum
number of columns. Since computing a truly minimal coloring is
NP-hard in general, we use the Floyd-Warshall greedy algorithm to
approximate a minimal coloring.

To apply graph coloring to predicate mapping, we formulate
an interference graph consisting of edges linking every pair of
predicates that both appear in any subject. That is, we create
GD =< VD, ED > for an RDF dataset D where

VD = {p |< s, p, o >∈ D|}
ED = {< pi, pj > |< s, pi, o > ∈ D ∧< s, pj, o > ∈ D|}

If a coloring M(GD, C) such that |C| ≤ m exists, then it pro-
vides a mapping of each predicate to precisely one database col-
umn. We use cDm to be a predicate mapping defined by coloring
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Figure 4: Graph Coloring Example

of dataset D with m or fewer colors. All of our datasets (see Sec-
tion 4 for details on them) except DBpedia could be colored to fit
on a database row. When a coloring does not exist, as in DBpedia,
this means there is no way to put all the predicates into the columns
such that every entity can be placed on one row and each predicate
for the entity be given exactly one column. In this case, we can
color a subset of predicates (e.g., based on query workload and
the most frequently occurring predicates), and compose a predicate
mapping function based on this coloring and hash functions.

We define more formally what we mean by coloring for a subset.
Specifically, we define a subset P of the predicates in dataset D,
and we write D ⊗ P to be all triples in D that have a predicate
from P . If we choose P such that the remaining data is colorable
with m− 1 colors, then we define a mapping function

ĉ
D⊗P
m ≡

{
cD⊗P
m−1 p ∈ P
m p /∈ P

This coloring function can be composed with another function to
handle the predicates not in P , for instance ĉD⊗P

m ⊕ hm. With this
predicate mapping composition, we were able to fit most of the data
for a given entity on a single row, and reduce spills, while ensuring
that the number of columns usage was minimized. Note that this
same compositional approach can be used to handle dynamicity in
data. If a new predicate p gets added after coloring, the second hash
function is used to specify the column assignment for p.

Figure 4 shows how coloring works for the data in Figure 1(a).
Predicates died, born, and founder have interference edges because
they co-occur for entity Charles Flint. Similarly, founder, born, home and
board co-occur for Larry Page and are hence connected. Notice fur-
ther that the coloring algorithm will color board and died the same
color even though both are predicates for the same type of entity
(e.g., Person) because they never co-occur together (in the data).
Overall, for the 13 predicates, we only need 5 colors.

2.3 Graph Coloring in practice
We evaluated the effectiveness of coloring using four RDF

datasets (see Section 4 for details). Our datasets were chosen so that
they covered a wide range of skews and distributions [6]. So, for
example, while the average out-degree in DBpedia is 14, in LUBM
and SP2B it’s 6. The average in-degree in DBpedia is 5, in SP2B
2 and in LUBM 8. Beyond averages, out-degrees and in-degrees
in DBpedia follow a power-law distribution [6] and therefore some
subjects have significantly more predicates than others.

The results of graph coloring for all datasets are shown in Ta-
ble 4. For the first three datasets, coloring covered 100% of the
dataset, and reduced from 30% to as much as 85% the number of
columns required in the DPH and RPH relations. So, while the
LUBM dataset has 18 predicates, we only require 10 columns in
the DPH and 3 in the RPH relations. In the one case where col-
oring could not cover all the data, it could still handle 94% of the
dataset in DPH with 75 columns, and 99% of the dataset in RPH
with 51 columns, when we focused on the frequent predicates and
the query workload. To put this in perspective, a one-to-one map-
ping from predicates to columns would require 53,796 columns for
DBpedia (instead of 75 and 51, respectively).

We now discuss spills and nulls. Ideally, we want to eliminate
spills since they affect query evaluation. Indeed, by coloring in full

Dataset Triples Total DPH Percent. RPH Percent.
Predicates Columns Covered Columns Covered

SP2Bench 100M 78 54 100% 53 100%
PRBench 60M 51 35 100% 9 100%
LUBM 100M 18 10 100% 3 100%
DBpedia 333M 53,976 75 94% 51 99%

Table 4: Graph Coloring Results

the first three datasets, we have no spills in the DPH and RPH rela-
tions. So, storing 100M triples from LUBM in DB2RDF results in
15,619,640 tuples in DPH (one per subject) and 11,612,725 tuples
in RPH (one per object). Similarly, storing 100M triples of SP2B
in DB2RDF results in 17,823,525 in DPH and 47,504,066 tuples in
RPH, without any spills. In DBpedia, storing 333M triples results
in DPH and RPH relations with 23,967,748 and 78,697,637 tuples,
respectively, with only 808,196 spills in the former (3.37% of the
DPH) and 35,924 spills in the latter (0.04% of RPH). Of course,
our coloring considered the full dataset before loading so it is inter-
esting to investigate how successful coloring is (in terms of spills)
if only a subset of the dataset is considered. Indeed, we tried color-
ing only 10% of the dataset, using random sampling of records. We
used the resulted coloring from the sample to load the full dataset
and counted any spills along the way. For LUBM, by only coloring
10% of the records, we were still able to load the whole dataset
without any spills. For SP2B, loading the full dataset resulted in a
negligible number of spills, namely, 139 spills (out of 17,823,525
entries) in DPH, and 666 (out of 47,504,066 entries) in RPH. More
importantly, for DPpedia we only had 222,423 additional spills in
DPH (a 0.9% increase in DPH) and 216,648 additional spills in
RPH (a 0.3% increase). So clearly, our coloring algorithm per-
forms equally well for bulk and for incremental settings.

In any dataset, each subject does not instantiate all predicates,
and therefore even in the compressed (due to coloring) DPH and
RPH relations not all subjects populate all columns. Indeed, our
statistics show that for LUBM, in the DPH relation 64.67% of its
predicate columns contain NULLs, while this number is 94.77%
for the RPH relation. For DBpedia, the corresponding numbers are
93% and 97.6%. It is interesting to see how a high percentage of
NULLs affects storage and querying. In terms of storage, exist-
ing commercial (e.g., IBM DB2) and open-source (e.g., Postgres)
database systems can accommodate large numbers of NULLs with
small costs in storage, by using value compression. Indeed, this
claim is also verified by the following experiment. We created a
1M triples dataset in which each triple in the dataset had the same
5 predicates and loaded this dataset in our DB2RDF schema using
IBM DB2 as our relational back-end. The resulting DPH relation
has 5 predicate columns and no NULL values (as expected) and its
size on disk was approximately 10.1MB. We altered the DPH rela-
tion and introduced (i) 5 additional null-populated predicate/value
columns, (ii) 45 null-populated columns, or (iii) 95 null-populated
columns. The storage requirements for these relations changed to
10.4MB, 10.65MB and 11.4MB respectively. So, increasing by 20-
fold the size of the original relation with NULLs only required 10%
of extra space.

We also evaluated these queries across all these relations. The
impact of NULLs is more noticeable here. We considered both fast
queries with small result sets, and longer running queries with large
result sets. The 20-fold increase in NULLs resulted in differences
in evaluation times that ranged from as low as 10% to as much
as a two-fold increase on the fastest queries. So, while the pres-
ence of NULLs has small impact in storage, it can noticeably affect
query performance, at least for very fast queries. This illustrates
the value of our coloring techniques. By reducing both the number
of columns with nulls, and the number of nulls in existing columns,
we improve query evaluation and minimize space requirements.
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3. QUERYING RDF
Relational systems have a long history of query optimization,

so one might suppose that a naive translation from SPARQL to SQL
would be sufficient, since the relational optimizer can optimize the
SQL query once the translation has occurred. However, as we show
empirically here and in Section 4, huge performance gains can oc-
cur when SPARQL and the SPARQL to SQL translation are indepen-
dently optimized. In what follows, we first present a novel hy-
brid SPARQL query optimization technique, which is generic and
independent of our choice of representing RDF data (in relational
schema, or otherwise). In fact these techniques can be applied di-
rectly to query optimization for native RDF stores. Then, we intro-
duce query translation techniques tuned to our schema representa-
tion. Figure 5 shows the steps of the optimization and translation
process, as well as the key structures constructed at each step.

3.1 The SPARQL Optimizer
There are three inputs to our optimization:

1. The query Q: The SPARQL query conforms to the SPARQL 1.0
standard. Therefore, each query Q is composed of a set of hierar-
chically nested graph patterns P , with each graph pattern P ∈ P
being, in its most simple form, a set of triple patterns.
2. The statistics S over the underlying RDF dataset: The types
and precision with which statistics are defined is left to specific
implementations. Examples of collected statistics include the total
number of triples, average number of triples per subject, average
number of triples per object, and the top-k URIs or literals in terms
of number of triples they appear in, etc.
3. The access methods M: Access methods provide alternative
ways to evaluate a triple pattern t for some pattern P ∈ P . The
methods are system-specific, and dependent on existing indexes.
For example, for a system like DB2RDF with only subject and ob-
ject indexes (no predicate indexes), the methods would be access-
by-subject (acs), by access-by-object (aco) or a full scan (sc).

Figure 6 shows a sample input where query Q retrieves the peo-
ple that founded or are board members of companies in the software
industry. For each such company, the query retrieves the products
that were developed by it, its revenue, and optionally its number of
employees. The statistics S contain the top-k constants like IBM or
industry with counts of their frequency in the base triples. Three
different access methods are assumed in M, one that performs
a data scan (sc), one that retrieves all the triples given a subject
(acs), and one that retrieves all the triples given an object (aco).

The optimizer consists of two modules, namely, the Data Flow
Builder DFB, and the Query Plan Builder QPB.
• Data Flow Builder (DFB): Query triple patterns typically share
variables, and hence the evaluation of one is often dependent on
that of another. For example, in Figure 6(a) triple pattern t1 shares
variable ?x with both triples patterns t2 and t3. In DFB, we use
sideways information passing to construct an optimal flow tree, that
considers cheaper patterns (in terms of estimated variable bindings)
first before feeding these bindings to more expensive patterns.
• Query Plan Builder (QPB): While the DFB considers informa-
tion passing irrespectively of the query structure (i.e.,, the nest-

SELECT ?

WHERE { ?x home “Palo Alto” t1

{ ?x founder ?y t2 UNION

?x member ?y t3 }

{ ?y industry “Software” t4

?z developer ?y t5

?y revenue ?n t6 }
OPTIONAL {

?y employees ?m t7 } }

(a) Sample queryQ

value count
IBM 7
industry 6
Google 5
Software 2
Avg triples per subject 5
Avg triples per object 1
Total triples 26

(b) top-k stats in S

M = {sc, acs, aco }

(c) Access methodsM

Figure 6: Sample input for query optimization/translation
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Figure 8: Data flow graph

ing of patterns and pattern operators), the QPB module incorpo-
rates this structure to build an execution tree (a storage-independent
query plan). Our query translation (Section 3.2) uses this execution
tree to produce a storage specific query plan.

3.1.1 The Data Flow Builder
The DFB starts by building a parse tree for the input query. The

tree for the query in Figure 6(a) is shown in Figure 7. Then it
uses sideways information passing to compute the data flow graph
which represents the dependences amongst the executions of each
triple pattern. A node in this graph is a pair of a triple pattern and an
access method; an edge denotes one triple producing a shared vari-
able that another triple requires. Using this graph, DFB computes
the optimal flow tree (the blue nodes in Figure 7) which determines
an optimal way (in terms of minimizing costs) to traverse all the
triple patterns in the query. In what follows, we describe in detail
how all these computations are performed.

Computing cost.

Definition 3.1 (Triple Method Cost). Given a triple t, an access
method m and statistics S, function TMC(t,m,S) :→ c, c ∈ R≤0

assigns a cost c to evaluating t using m wrt statistics S.

The cost estimation clearly depends on the statistics S. In
our example, TMC(t4, aco,S) = 2 because the exact lookup
cost using the object Software is known. For a scan method,
TMC(t4, sc,S) = 26, i.e., the total number of triples in the dataset.
Finally, TMC(t4, acs,S) = 5, i.e., the average number of triples
per subject, assuming subject is bound by a prior triple access.

Building the Data Flow Graph.
The data flow graph models how using the current set of bind-

ings for variables can be used to access other triples. In model-
ing this flow, we need to respect the semantics of AND, OR and
OPTIONAL patterns. We first introduce a set of helper functions
that are used to define the graph. We use ↑ to refer to parents in the
query tree structure: for a triple or a pattern, it is the immediately
enclosing pattern. We use ∗ to denote transitive closure.



Definition 3.2 (Produced Variables). P(t,m) :→ Vprod maps a
triple and an access method pair to a set of variables that are bound
after the lookup, where t is a triple, m is an access method, and
Vprod is the set of variables.

In our example, for the pair (t4, aco), P(t4, aco) :→ y, because
the lookup uses Software as an object, and the only variable that
gets bound as a result of the lookup is y.

Definition 3.3 (Required Variables). R(t,m) :→ Vreq maps a
triple and an access method pair to a set of variables that are re-
quired to be bound for the lookup, where t is a triple, m is an
access method, and Vreq is the set of variables.

Back to the example, R(t5, aco) :→ y. That is, if one uses the
aco access method to evaluate t5, then variable y must be bound by
some prior triple lookup.

Definition 3.4 (Least Common Ancestor). LCA(p, p′) is the first
common ancestor of patterns p and p′. More formally, it is defined
as follows:

LCA(p, p′) = x ⇐⇒
x ∈ ↑∗(p) ∧ x ∈ ↑∗(p′) ∧ @y.y ∈ ↑∗(p) ∧ y ∈ ↑∗(p′) ∧ x ∈ ↑∗(y)

As an example, in the Figure 7, the least common ancestor of
ANDN and OR is ANDT .

Definition 3.5 (Ancestors To LCA). ↑↑ (p, p′) refers to the set of
↑∗ built from traversing from p to the LCA(p, p′):

↑↑ (p, p
′
) ≡

{
x
∣∣x ∈ ↑∗(p) ∧ ¬x ∈ ↑∗(LCA(p, p′))

}
For instance, for the query shown in Figure 7, ↑↑

(t1, LCA(t1, t2)) = {ANDT ,OR}

Definition 3.6 (OR Connected Patterns). ∪ denotes that two triples
are related in an OR pattern, i.e. their least common ancestor is an
OR pattern: ∪(t, t′) ≡ LCA(t, t′) is OR.

In the example, t2 and t3 are ∪.

Definition 3.7 (OPTIONAL Connected Pattern). OPTIONAL Con-
nected Patterns ∩̂ denotes if one triple is optional with respect to
another, i.e. there is an OPTIONAL pattern guarding t′ with re-
spect to t:

∩̂(t, t′) ≡ ∃p : p ∈ ↑↑(t′, t) ∧ p is OPTIONAL

In the example, t6 and t7 are ∩̂, because t7 is guarded by an
OPTIONAL in relation to t6.

Definition 3.8 (Data Flow Graph). The Data Flow Graph is a
graph of G =< V,E >, where V = (T × M) ∪ root, where
root is a special node we add to the graph. A directed edge
(t,m)→ (t′,m′) exists in V when the following conditions hold:

P(t,m) ⊃ R(t
′
,m
′
) ∧ ¬

(
∪(t, t′) ∨ ∩̂(t′, t)

)
In addition, a directed edge from root exists to a node (t,m) if
R(t,m) = ∅.

In the example , a directed edge root → (t4, aco) exists in the
data flow graph (in Figure 8 we show the whole graph but for
simplicity in the figure we omit the root node), because t4 can
be accessed by an object with a constant, and it has no required
variables. Further, (t4, aco) → (t2, aco) is part of the data flow
graph, because (t2, aco) has a required variable y that is produced
by (t4, aco). In turn, (t2, aco) has an edge to (t1, acs), because
(t1, acs) has a required variable x which is produced by (t2, aco).

The Data Flow Graph G is weighted, and the weights for each
edge between two nodes is determined by a function:

W((t,m), (t
′
,m
′
)),S) :→ w

The w is derived from the costs of the two nodes, i.e.,
TMC(t,m,S), and TMC(t′,m′,S). A simple implementation of
this function, for example could apply the cost of the target node
to the edge. In the example, for instance, w for the edge root →
(t4, aco) is 2, whereas the edge root→ (t4, asc) is 5.

Computing The Optimal Flow Tree.
Given a weighted data flow graph G, we now study the problem

of computing the optimal (in terms of minimizing the cost) order
for accessing all the triples in queryQ.

Theorem 3.1. Given a data flow graph G for a queryQ, finding the
minimal weighted tree that covers all the triples inQ is NP-hard.

The proof is by reduction from the TSP problem and is omitted
here due to lack of space. In spite of this negative result, one might
think that the input queryQ is unlikely to contain a large number of
triples, so an exhaustive search is indeed possible. However, even
in our limited benchmarks, we found this solution to be impractical
(e.g., one of our queries in the tool integration benchmark had 500
triples, spread across 100 OR patterns). We therefore introduce a
greedy algorithm to solve the problem: Let T denote the execu-
tion tree we are trying to compute. Let τ refer to the set of triples
corresponding to nodes already in the tree:

τ ≡ {ti |∃mi (ti,mi) ∈ T }

We want to add a node that adds a new triple to the tree while
adding the cheapest possible edge; formally, we want to choose a
node (t′,m′) such that

(t′,m′) ∈ V ∧ # node to add
t′ /∈ τ ∧ # node adds new triple
∃(t,m) :

(t,m) ∈ T ∧ # node currently in tree
(t,m)→ (t′,m′) ∧ # valid edge to new node
# no similar pair of nodes such that...
@(t′′,m′′), (t′′′,m′′′) :

(t′′,m′′) ∈ T ∧
t′′′ /∈ τ∧
(t′′,m′′)→ (t′′′,m′′′)∧
# ...adding (t′′′,m′′′) is cheaper
W((t′′,m′′), (t′′′,m′′′)) < W((t,m), (t′,m′))




On the first iteration,T 0 = root, and τ0 = ∅. T i+1 is computed

by applying the step defined above, and the triple of the chosen
node is added to τ i+1. In our example, root → (t4, aco) is the
cheapest edge, so T 1 = (t4, aco), and τ0 = t4. We then add
(t2, aco) to T 2, and so on. We stop when we get to T n, where n
is the number of triples in Q. Figure 8 shows the computed tree
(marked blue nodes) while Figure 9 shows the algorithm, where
function triple(j) returns the triple associated with a node in G.

3.1.2 The Query Plan Builder
Both the data flow graph and the optimal flow tree largely ignore

the query structure (the organization of triples into patterns) and the
operators between the (triple) patterns. Yet, they provide useful in-
formation as to how to construct an actual plan for the input query,
the focus of this section and output of the QPB module.

In more detail, Figure 10 shows the main algorithm ExecTree of
the module. The algorithm is recursive and takes as input the opti-
mal flow tree F computed by DFB, and (the parse tree of) a pattern
P , which initially is the main pattern that includes the whole query



Input: The weighted data flow graph G
Output: An optimal flow tree T

1 τ ← ∅;
2 T ← root;
3 E ← SortEdgesByCost(G);
4 while |T | < |Q| do
5 for each edge eij ∈ E do
6 if i ∈ T ∧ j /∈ T ∧ triple(j) 6∈ τ then
7 T ← T ∪ j;
8 τ ← τ ∪ triple(j);
9 T ← eij ;

Figure 9: The algorithm for computing the optimal flow tree

Input: The optimal flow tree F of queryQ, a pattern P inQ
Output: An execution tree T for P , a set L of execution sub-trees

1 T ← ∅; L ← ∅;
2 switch the type of pattern P do
3 case P is a SIMPLE pattern
4 for each triple pattern ti ∈ P do
5 T i ← GetTree(ti, F); Li ← ∅;
6 if isLeaf(T i, F) then L ← L ∪ T i ;
7 else (T ,L)← AndTree(F , T , L, T i, Li) ;
8 case P is an AND pattern
9 for each sub-pattern P i ∈ P do

10 (T i,Li)← ExecTree(F , P i);
11 (T ,L)← AndTree(F , T , L, T i, Li);
12 case P is an OR pattern
13 for each sub-pattern P i ∈ P do
14 (T i,Li)← ExecTree(F , P i);
15 (T ,L)← OrTree(F , T , L T i, Li);
16 case P is an OPTIONAL pattern
17 (T ′,L′)← ExecTree(F , P);
18 (T ,L)← OptTree(F , T , L T ′, L′);
19 case P is a nested pattern
20 (T ,L)← ExecTree(F , P);
21 return (T ,L)
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OR1

AND2

AND3

AND4 OPTIONAL1

AND5

(t4, aco)

(t2, aco) (t3, aco)

(t1, acs)

(t5, aco)

(t6, acs) (t7, acs)

Figure 10: The ExecTree Algorithm and resulting execution tree

Q. So in our running example, for the query in Figure 6(a), the
algorithm takes as input the parse tree in Figure 7 and the optimal
flow tree in Figure 8. The algorithm returns a schema-independent
plan T , called the execution tree for the input query pattern P . The
set of returned execution sub-trees L is guaranteed to be empty
when the recursion terminates, but contains important information
that the algorithm passes from one level of recursion to the previous
one(s), while the algorithm runs (more on this later).

There are four main types of patterns in SPARQL, namely, SIM-
PLE, AND, UNION (a.k.a OR), and OPTIONAL patterns, and the
algorithm handles each one independently, as we illustrate through
our running example. Initially, both the execution tree T and the
set L are empty (line 1). Since the top-level node in Figure 7 is an
AND node, the algorithm considers each sub-pattern of the top-level
node and calls itself recursively (lines 8-10) with each of the sub-
patterns as argument. The first sub-pattern recursively considered is
a SIMPLE one consisting of the single triple pattern t1. By consult-
ing the flow tree F , the algorithm determines the optimal execution
tree for t1 which consists of just the node (t1, acs) (line 5). By fur-
ther consulting the flow (line 6) the algorithm determines that node
(t1, acs) is a leaf node in the optimal flow and therefore it’s eval-
uation depends on the evaluation of other flow nodes. Therefore,
the algorithm adds tree (t1, acs) to the local late fusing set L of
execution trees. Set L contains execution sub-trees that should not
be merged yet with the execution tree T but should be considered
later in the process. Intuitively, late fusing plays two main roles:
(a) it uses the flow as a guide to identify the proper point in time to
fuse the execution tree T with execution sub-trees that are already
computed by the recursion; and (b) it aims to optimize query eval-
uation by minimizing the size of intermediate results computed by
the execution tree, and therefore it only fuses sub-trees at the lat-
est possible place, when either the corresponding sub-tree variables
are needed by the later stages of the evaluation, or when the oper-

ators and structure of the query enforce the fuse. The first recur-
sion terminates by returning (T 1,L1) = (∅, {L1 = (t1, acs)}).
The second sub-pattern in Figure 7 is an OR and is therefore han-
dled in lines 12-15. The resulting execution sub-tree contains three
nodes, an OR node as root (from line 15) and nodes (t2, aco) and
(t3, aco) as leaves (recursion in line 14). This sub-tree is also
added to local set L and the second recursion terminates by re-
turning (T 2,L2) = (∅, {L2 = {OR, (t2, aco), (t3, aco)}}). Fi-
nally, the last sub-pattern in Figure 7 is an AND pattern again,
which causes further recursive calls in lines 8-11. In the recur-
sive call that processes triple t4 (lines 5-7), the execution tree node
(t4, aco) is the root node in the flow and therefore it is merged
to the main execution tree T . Since T is empty, it becomes the
root of the tree T . The three sub-trees that include nodes (t5, aco),
(t6, acs), and OPT = {(OPTIONAL), (t7, aco)} are all becoming
part of set L. Therefore, the third recursion terminates by return-
ing (T 3,L3) = ((t4, aco), {L3 = {(t5, aco)}, L4 = {(t6, acs)},
L5 = {(OPTIONAL), (t7, aco)}}. Notice that after each recursion
ends (line 10), the algorithm considers (line 11) the returned ex-
ecution T i and late-fuse Li trees and uses function AndTree to
build a new local execution T and set L of late-fusing trees (by
also consulting the flow and following the late-fusing guidelines on
postponing tree fusion unless it is necessary for the algorithm to
progress). So, after the end of the first recursion and the first call
to function AndTree, (T ,L) = (T 1,L1), i.e.,, the trees returned
from the first recursion. After the end of the second recursion, and
the second call to AndTree, (T ,L) = (∅,L1 ∪ L2). Finally, after
the end of the third recursion, (T ,L) = ((t4, aco),L1 ∪L2 ∪L3).
The last call to AndTree builds the tree to the right of Figure 10
in the following manner. Starting from node (t4, aco), it consults
the flow and picks from the set L the sub-tree L2 and connects
this to node (t4, aco) by adding a new AND node as the root of the
tree. Sub-trees L3 , L4 and L5 can be added at this stage to T but
they are not considered as they violate the principles of late-fusing
(their respective variables are not used by any other triple, as is also
obvious by the optimal flow). On the other hand, there is still a de-
pendency between the latest tree T and L1 since the selectivity of
t1 can be used to reduce the intermediate size of the query results
(especially the bindings to variable ?y). Therefore, a new AND is
introduced and the existing T is extended with L1. The process it-
erates in this fashion until the whole tree in Figure 10 is generated.

Note that by using the optimal flow tree as a guide, we are able
to weave the evaluation of different patterns, while our structured-
based processing guarantees that the associativity of operations in
the query is respected. So, our optimizer can generate plans like
the one in Figure 10 where only a portion of a pattern is initially
evaluated (e.g., node (t4, aco)) while the evaluation of other con-
structs in the pattern (e.g., node (t5, aco)) can be postponed until it
no longer can be avoided. At the same time, this de-coupling from
query structure allow us to safely push the evaluation of patterns
early in the plan (e.g., node (t1, acs)) when doing so improves se-
lectivity and reduces the size of intermediate results.

3.2 The SPARQL to SQL Translator
The translator takes as input the execution tree generated from

the QPB module and performs two operations: first, it transforms
the execution tree into an equivalent query plan that exploits the
entity-oriented storage of DB2RDF; second, it uses the query plan
to create the SQL query which is executed by the database.

3.2.1 Building the Query Plan
The execution tree provides an access method and an execution

order for each triple but assumes that each triple node is evaluated
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Figure 11: The query plan tree

SELECT ...

FROM 1: DPH AS T

WHERE 2: T.ENTITY = ... AND

3: T.PREDn1 = ... AND T.PREDn2 = ...

4:
LEFT OUTER JOIN DS AS S0
ON T.VALn1 = S0.lid

Figure 12: SQL code template

independently of the other nodes. However, one of the advantages
of the entity-oriented storage is that a single access to, say, the DPH
relation might retrieve a row that can be used to evaluate multiple
triple patterns (star-queries). To this end, starting from the exe-
cution tree the translator builds a query plan where triples with the
same subject (or the same object) are merged in the same plan node.
A merged plan node indicates to the SQL builder that the containing
triples form a star-query and must be executed with a single SQL
select. Merging of nodes is always advantageous with one excep-
tion: when the star query involves entities with spills. The pres-
ence of such entities would require self-joins of the DPH (RPH)
relations in the resulting SQL statement. Self-joins are expensive
and therefore we use the following strategy to avoid them: When
we know that star-queries involve entities with spills, we choose to
cascade the evaluation of the star-query by issuing multiple SQL
statements, each evaluating a subset of the star-query while at the
same time filtering entities from the subsets of the star-query that
have been previously evaluated. The multiple SQL statements are
such that no SQL statement accesses predicates stored into different
spill rows. Of course, the question remains on how we determine
whether spills affect a star query. In our system this is straightfor-
ward. With only a tiny fraction of predicates involved in spills (due
to coloring – see Section 4), our optimizer consults an in-memory
structure of predicates involved in spills to determine during merg-
ing whether any of the star-query predicates participate in spills.

During the merging process we need to respect both the struc-
tural and semantic constraints. The structural constraints are im-
posed by the entity-oriented representation of data. To satisfy the
structural constraints, candidate nodes for merging need to refer to
the same entity, have the same access method and do not involve
spills. As an example, in Figure 8 nodes t2 and t3 refer to the same
entity (due to variable ?x) and the same access method aco, as do
nodes t6 and t7, due to the variable ?y and the method acs.

Semantic constraints for merging are imposed by the control
structure of the SPARQL query (i.e., the AND, UNION, OPTIONAL
patterns). This restricts the merging of triples to constructs for
which we can provide the equivalent SQL statements to access the
relational tables. Triples in conjunctive and disjunctive patterns can
be safely merged because the equivalent SQL semantics are well un-
derstood. Therefore, with a single access we can check whether the
row includes the non-optional predicates in the conjunction. Sim-
ilarly, it is possible to check the existence of any of the predicates
mentioned in the disjunction. More formally, to satisfy the seman-
tic constraints of SPARQL, candidate nodes for merging need to be
ANDMergeable, ORMergeable or OPTMergeable.

Definition 3.9 (AND Mergeable Nodes). Two nodes are
ANDMergeable iff their least common ancestor and all intermediate
ancestors are AND nodes:

ANDMergeable(t, t′) ⇐⇒
∀x : x ∈ (↑↑ (t, LCA(t, t′))∪ ↑↑ (t′, LCA(t, t′))) =⇒ x is AND

Definition 3.10 (OR Mergeable Nodes). Two nodes are

ORMergeable iff their least common ancestor and all intermediate
ancestors are OR nodes:

ORMergeable(t, t′) ⇐⇒
∀x : x ∈ (↑↑ (t, LCA(t, t′))∪ ↑↑ (t′, LCA(t, t′))) =⇒ x is OR

Going back to the execution tree in Figure 10, notice that
ORMergeable (t2, t3) is true, but ORMergeable (t2, t5) is false.

Definition 3.11 (OPTIONAL Mergeable Nodes). Two nodes are
OPTMergeable iff their least common ancestor and all intermedi-
ate ancestors are AND nodes, except the parent of the higher order
triple in the execution plan which is OPTIONAL:

OPTMergeable(t, t′) ⇐⇒
∀x : x ∈ (↑↑ (t, LCA(t, t′))∪ ↑↑ (t′, LCA(t, t′)))
=⇒ x is AND ∨ {x is OPTIONAL ∧ x is parent of t′}

As an example, in Figure 10 OPTMergeable (t6, t7) is true.
Given the input execution tree, we identify pairs of nodes that

satisfy both the structural and semantic constraints introduced, and
we merge them. Due to lack of space, we omit here the full details
of the node merging algorithm and illustrate the output of the al-
gorithm for our running example. So, given as input the execution
tree in Figure 10, the resulting query plan tree is shown in Fig-
ure 11. Notice that in the resulting query plan there are two node
merges, one due to the application of the ORMergeable definition,
and one by the application of the OPTMergeable definition. Note
that each merged node is annotated with the corresponding seman-
tics under which the merge was applied. As a counter-example,
consider node (t5, aco) which is compatible structurally with the
new node ({t2, t3}, aco) since they both refer to the same entity
through variable ?y, and have the same access method aco. How-
ever, these two nodes are not merged since they violate the semantic
constraints (i.e., they do not satisfy the definitions above since their
merge would mix a conjunctive with a disjunctive pattern). Even
for our simple running example, the two identified node merges re-
sult in significant savings in terms of query evaluation. Intuitively,
one can think of these two merges as eliminating two extra join op-
erations during the translation of the query plan to an actual SQL
query over the DB2RDF schema, the focus of our next section.

3.2.2 The SQL Generation
SQL generation is the final step of query translation. The query

plan tree plays an important role in this process, and each node in
the query plan tree, be it a triple, merge or control node, contains
the necessary information to guide the SQL generation. For the gen-
eration, the SQL builder performs a post order traversal of the query
plan tree and produces the equivalent SQL query for each node. The
whole process is assisted by the use of SQL code templates.

In more detail, the base case of SQL translation considers a node
that corresponds to a single triple or a merge. Figure 12 shows the
template used to generate SQL code for such a node. The code in
box 1 sets the target of the query to the DPH or RPH tables, ac-
cording to the access method in the triple node. The code in box 2
restricts the entities being queried. As an example, when the subject
is a constant and the access method is acs, the entry is connected
to the constant subject values. When the subject is variable and
the method is acs, then entry is connected with a previously-bound
variable from a prior SELECT sub-query. The same reasoning ap-
plies for the entry component for an object when the access method
is aco. Box 3 illustrates how one or more predicates are selected.
That is, when the plan node corresponds to a merge, multiple predi

components are connected through conjunctive or disjunctive SQL
operators. Finally, box 4 shows how we do outer join with the sec-
ondary table for multi-valued predicates.



WITH QT4RPH AS
SELECT T.val1 AS val1 FROM RPH AS T WHERE T.entry =’Software’ AND T.pred1 =’industry’,

QT4DS AS
SELECT COALESCE (S.elm, T.val1 ) AS y
FROM QT4RPH AS T LEFT OUTER JOIN DS AS S ON T.val1 =S.l_id

QT23RPH AS
SELECT QT4DS.y,

CASE T.predm =’founder’ THEN valm ELSE null END AS valm ,
CASE T.pred0 =’member’ THEN val0 ELSE null END AS val0

FROM RPH AS T, QT4DS
WHERE T.entry =QT4DS.y AND (T.predm =’founder’ OR T.pred0 =’member’),

QT23 AS
SELECT LT.val0 AS x, T.y FROM QT23RPH as T, TABLE (T.valm , T.val0 ) as LT(val0 )
WHERE LT.val0 IS NOT NULL

QT1DPH AS
SELECT T.entry AS x, QT23 .y FROM DPH AS T, QT23
WHERE T.entry =QT23 .x AND T.predk =’home’ AND T.val1 =’Palo Alto’,

QT5RPH AS
SELECT T.entry AS y, QT1DPH.x FROM RPH AS T, QT1DPH
WHERE T.entry =QT1DPH.y AND T.pred1 =’developer’,

QT67DPH AS
SELECT T.entry AS y, QT5RPH.x, CASE T.predk =’employees’ THEN valk ELSE null END as z
FROM DPH AS T, QT5RPH WHERE T.entry =QT5RPH.y AND T.predm =’revenue’

SELECT x, y, z FROM QT67DPH

Figure 13: Generated SQL for SPARQL Query in Figure 6

The operator nodes in the query plan are used to guide the con-
nection of instantiated templates like the one in Figure 12. We have
already seen how AND nodes are implemented through the vari-
able binding across triples as in box 2. For OR nodes we use the
SQL UNION operator to connect its components’ previously defined
SELECT statements. For OPTIONAL we use LEFT OUTER JOIN
between the SQL template for the main pattern and the SQL tem-
plate for the OPTIONAL pattern. Figure 13 shows the final SQL for
our running example where the SQL templates described above are
instantiated according to the query plan tree in Figure 11.

In Figure 13, several Common Table Expressions (CTEs) are
used for each plan node. t4 is evaluated first and accesses RPH us-
ing the Software constant. Since industry is a multivalued predicate, the
RS table is also accessed. The remaining predicates in this example
are single valued and the access to the secondary table is avoided.
The ORMergeable node t23 is evaluated next using the RPH table
where the object is bound to the values of y produced by the first
triple. The WHERE clause enforces the semantic that at least one
of the predicates is present. The CTE projects the values corre-
sponding to the present predicates and null values for those that are
missing. The next CTE just flips these values, creating a new result
record for each present predicate. The plan continues with triple t5
and is completed with node the OPTMergeable node t67. Here no
constraint is imposed for the optional predicate making its presence
optional on the record. In case the predicate is present, the corre-
sponding value is projected, otherwise null. In this example, each
predicate is assigned to a single column. When predicates are as-
signed to multiple columns, the position of the value is determined
with CASE statements as seen in the SQL sample.

3.3 Advantages of the SPARQL Optimizer
To examine the effectiveness of our query optimization, we

conducted experiments using both our 1M triple microbenchmark
of Section 2.1 (which offers more control) and queries from the
datasets used in our main experimental section (Section 4). As an
example, for our microbenchmark we considered two constant val-
ues O1 and O2 with relative frequency in the data of .75 and .01, re-
spectively. Then, we issued the simple query shown in Figure 14(a)
that allowed data flows in either direction; i.e., evaluation could
start on t1 with an aco using O1, then use the bindings for ?s to ac-
cess t2 with an acs, or start instead on t2 with an aco using O2 and
use bindings for ?s to access t1. The latter case is of course better.
Figure 14(b) shows the SQL generated by our SPARQL optimizer
while Figure 14(c) shows an equivalent SQL query corresponding
to the only alternative but sub-optimal flow. The former query took
13 ms to evaluate, whereas the latter took 5X longer, that is 65
ms, suggesting that our optimization is in fact effective even in this

SELECT ?s WHERE { ?s SV1 O1
t1 . ?s SV2 O2

t2 }

(a) SPARQL Query

SELECT T.ENTRY, D.ENTRY FROM RS AS R, DPH AS D
WHERE R.ENTRY=’O2 ’ AND R.PROP=’SV2 ’ AND D.ENTRY=T.ENTRY AND D.VAL0=’O1 ’ AND D.PROP0=’SV1 ’

(b) Optimized SQL

SELECT T.ENTRY, D.ENTRY FROM RS AS R, DPH AS D
WHERE R.ENTRY=’O1 ’ AND R.PROP=’SV1 ’ AND D.ENTRY=T.ENTRY AND D.VAL0=’O2 ’ AND D.PROP0=’SV2 ’

(c) Alternative SQL

Figure 14: Query Translation

simple query. Using real and benchmark queries from datasets re-
sulted in even more striking differences in evaluation times. For ex-
ample, when optimized by our SPARQL optimizer query, PQ1 from
PRBench (Section 4) was evaluated in 4ms, while the translated
SQL corresponding to a sub-optimal flow required 22.66 seconds!

4. EXPERIMENTS
We compared the performance of DB2RDF, using IBM DB2 as

our relational back-end, to that of Virtuoso 6.1.5 OpenSource Edi-
tion, Apache Jena 2.7.3 (TDB), OpenRDF Sesame 2.6.8, and RDF-
3X 0.3.5. DB2RDF, Virtuoso and RDF-3X were run in a client
server mode on the same machine and all other systems were run
in process mode. For both Jena and Virtuoso, we enabled all recom-
mended optimizations. Jena had the BGP optimizer enabled. For
Virtuoso we built all recommended indexes. For DB2RDF, we only
added indexes on the entry columns of the DPH and RPH relations
(no indexes on the predi and vali columns).

We conducted experiments with 4 different benchmarks:
LUBM [7], SP2Bench [15], DBpedia [12], and a private benchmark
PRBench that was offered to us by an external partner organization.
For the LUBM and SP2Bench benchmarks, we scaled them up to
100 million triples each and used their associated published query
workloads. The DBpedia 3.7 benchmark [5] has 333 million triples.
The private benchmark included data from a tool integration appli-
cation, and it contained 60 million triples about various software ar-
tifacts generated by different tools (e.g., bug reports, requirements,
etc). For all systems, we evaluated queries in a warm cache sce-
nario. For each dataset, benchmark queries were randomly mixed
to create a run, and each run was issued 8 times to the 5 stores. We
discarded the first run and reported the average result for each query
over 7 consecutive runs. For each query, we measured its running
time excluding the time taken to stream back the results to the API,
in order to minimize variations caused by the various APIs avail-
able. As shown in Figure 15, the evaluated queries were classified
into four categories. Queries that failed to parse SPARQL correctly,
we reported as unsupported. The remainder supported queries were
further classified as either complete, timeout, or error. We counted
the results from each system and when a system provided the cor-
rect number of answers we classified the query as completed. If the
system returned the wrong number of results, we classified this as
an error. Finally, we used a timeout of 10 minutes to trap queries
that do not terminate within a reasonable amount of time. In the
figure, we also report the average time taken (in seconds) to eval-
uate complete and timeout queries. For queries that timeout, their
running time was set to 10 minutes. For obvious reasons, we do not
count the time of queries that return the wrong number of results.

This is the most comprehensive evaluation of RDF systems. Un-
like previous works, this is the first study that evaluates 5 systems
using a total of 78 queries, over a total of 600 million triples. Our
experiments were conducted on 5 identical virtual machines (one
per system), each equivalent to a 4-core, 2.6GHz Intel Xeon sys-
tem with 32GB of memory running 64-bit Linux. Each system was



not memory limited, meaning it could consume all of its 32G. None
of the systems came close to this memory limit in any experiment.

4.1 The datasets
• LUBM: The LUBM benchmark requires OWL DL inference,
which is not supported across all tested systems. Without inference,
most benchmark queries return empty result sets. To address this
issue, we expanded the existing queries and created a set of equiva-
lent queries that implement inference and do not require this feature
from the evaluated system. As an example, if the LUBM ontology
stated that GraduateStudent v Student, and the query asks for
?x rdf:type Student, the query was expanded into ?x rdf:type Stu-
dent UNION ?x rdf:type Graduate Student. We performed this set
of expansions and issued the same expanded query to all systems.
From the 14 original queries in the benchmark, only 12 (denoted as
LQ1 to LQ10, LQ13 and LQ14) are included here because 2 queries
involved ontological axioms that cannot be expanded.
• SP2Bench: SP2Bench is an extract of DBLP data with corre-
sponding SPARQL queries (denoted as SQ1 to SQ17). We used this
benchmark as is, with no modifications. Prior reports on this bench-
mark were conducted with at most 5 million triples (even in the pa-
per where the benchmark was introduced). We scaled to 100 mil-
lion triples, and noticed that some queries (by design) had rather
large result sets. SQ4 in particular created a cross product of the
entire dataset, which meant that all systems timeout on this query.
•DBpedia: The DBpedia SPARQL benchmark is a set of query tem-
plates derived from actual query logs against the public DBpedia
SPARQL endpoint [12]. We used these templates with the DBpe-
dia 3.7 dataset, and obtained 20 queries (denoted as DQ1 to DQ20)
that had non-empty result sets. Since templates were derived for an
earlier DBpedia version, not all result in non-empty queries.
• PRBench: The private benchmark reflects data from a tool in-
tegration scenario where specific information about the same soft-
ware artifacts are generated by different tools, and RDF data pro-
vides an integrated view on these artifacts across tools. This is
a quad dataset where triples are organized into over 1 million
’graphs’. As we explain, this caused problems for some systems
which do not support quads (e.g., RDF-3X, Sesame). We had 29
SPARQL queries (denoted as PQ1 to PQ29), with some being fairly
complex queries (e.g., a SPARQL union of 100 conjunctive queries).

4.2 Experimental results
Main Result 1. Figure 15 shows that DB2RDF is the only sys-
tem that evaluates correctly and efficiently 77 out of the 78 tested
queries. As mentioned, SQ4 was the only query in which our sys-
tem did timeout (as did all the other systems). If we exclude SQ4,
it is clear from Figure 15 that each of the remaining systems had
queries returning incorrect number of results, or queries that time-
out without returning any results. We do not emphasize the advan-
tage of DB2RDF in terms of SPARQL support, since this is mostly a
function of system maturity and continued development.

Main Result 2. Given Figure 15, it is hard to make direct system
comparisons. Still, when the DB2RDF system is compared with
systems that can evaluate approximately the same queries (i.e., Vir-
tuoso and Jena), then DB2RDF is in the worst case slightly faster,
and in the best case, as much as an order of magnitude faster than
the other two systems. So, for LUBM, DB2RDF is significantly
faster than Virtuoso (2X) and Jena (4X). For SP2Bench, DB2RDF
is on average times about 50% faster than Virtuoso, although Vir-
tuoso has a better geometric mean (not shown due to space con-
straints), which reflects Virtuoso being much better on short run-
ning queries. For DBpedia, DB2RDF and Virtuoso have compa-
rable performance, and for PRBench, DB2RDF is about 5.5X bet-

Dataset System Supported Unsupported Mean
Complete Timeout Error (secs)

LUBM Jena 12 - - - 35.1
Sesame 4 - 8 - 164.7

(100M triples) Virtuoso 12 - - - 16.8

(12 queries) RDF-3X 11 - - 1 2.8
DB2RDF 12 - - - 8.3

SP2Bench Jena 11 6 - - 253
Sesame 8 8 1 - 330

(100M triples) Virtuoso 16 1 - - 211

(17 queries) RDF-3X 6 2 2 7 152
DB2RDF 16 1 - - 108

DBpedia Jena 18 1 1 - 33
(333M triples) Virtuoso 20 - - - 0.25

(20 queries) DB2RDF 20 - - - 0.25
PRBench Jena 29 - - - 5.7

(60M triples) Virtuoso 25 - - 4 3.9
(29 queries) DB2RDF 29 - - - 1.0

Figure 15: Summary results for all systems and datasets
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Figure 16: LUBM benchmark results

ter than Jena. Jena is actually the only system that supports the
same queries as DB2RDF, and across all datasets DB2RDF is in
the worst case 60%, and in the best case as much as two orders of
magnitude faster. A comparison between DB2RDF and RDF-3X is
also possible, but only in the LUBM dataset where both systems
support a similar number of queries. The two systems are fairly
close in performance and out-perform the remaining three systems.
When compared between themselves across 11 queries (RDF-3X
did not run one query), DB2RDF is faster than RDF-3X in 3 queries,
namely in LQ8, LQ13 and LQ14 (246ms, 14ms and 4.6secs versus
573ms, 36ms and 9.5secs, respectively), while RDF-3X has clearly
an advantage in 3 other queries, namely in LQ2, LQ6, LQ10 (722ms,
12secs and 1.57secs versus 20secs, 33secs and 3.42secs, respec-
tively). For the remaining 5 queries, the two systems have almost
identical performance with RDF-3X being faster than DB2RDF by
approximately 3ms for each query.

Detailed results: For a more detailed per-query comparison, we
turn to Figure 16 which illustrates the running times for DB2RDF,
Virtuoso and Jena for all 12 LUBM queries (reported times are in
milliseconds and the scale is logarithmic). Notice that DB2RDF
outperforms the other systems in the long-running and complicated
queries (e.g., LQ6, LQ8, LQ9, LQ13, LQ14). So, DB2RDF takes
approximately 34secs to evaluate LQ6, while Virtuoso requires
83.2secs and Jena 150secs. Similarly, DB2RDF takes 40secs to
evaluate LQ9, whereas Virtuoso requires 46 and Jena 60secs. Most
notably, in LQ14 DB2RDF requires 4.6secs while Virtuoso requires
53secs and Jena 94.1secs. For the sub-second queries, DB2RDF is
slightly slower than the other systems, but the difference is negli-
gible at this scale. So, for LQ1, DB2RDF requires 5ms, while Vir-
tuoso requires 1.8ms and Jena 2.1ms. Similarly, for LQ3 DB2RDF
requires 3.4ms while Virtuoso takes 1.8ms and Jena 2.0ms.

The situation is similar in the PRBench case. Figure 17 shows
the evaluation time of 4 long-running queries. Consistently,
DB2RDF outperforms all other systems. For example, for PQ10
DB2RDF takes 3ms, while Jena requires 27 seconds and Virtuoso
requires 39 seconds! For each of the other three queries, DB2RDF
takes approx 4.8secs while Jena requires a minimum of 32 and Vir-
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Figure 17: PRBench sample of long-running queries
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Figure 18: PRBench sample of medium-running queries

tuoso a minimum of 11secs. Figure 18 shows that the situation
is similar for medium-running queries where DB2RDF consistently
outperforms the competition.

5. RELATED WORK
Abadi et al. [2] propose a predicate-oriented storage for efficient

RDF management which uses column stores technology and avoids
many of the self-join operations in the final SQL. A recently pro-
posed index structure for RDF called GRIN [20] uses a grouping
technique to determine a small subset of the RDF database that con-
tains the answers to a query and can be used independently of the
underlying RDF representation. Stocker et al. [17] and Hartig and
Heese [8] propose techniques for algebraic re-writing of SPARQL
queries to help the query engine devise a better query plan (we
already commented about the limitations of these and the follow-
ing technique in previous sections). Madulo et al. [11] describe a
technique to estimate the selectivity of a triple pattern by gathering
frequency statistics of the subject, predicate and object and then
assuming probabilistic independence between their distributions.

Chen et al. [4] improve the performance of relational-based
XML engines. As in our work, the authors store XML documents
in a single wide and sparse table. Unlike our work, the manage-
ment of null values is shifted to the relational engine, and spills are
not handled, i.e., it is not clear the work handles the case when an
XML element is too large to fit in a record.

Weiss et al. [22] propose an in-memory store based on six ex-
tended indexes for RDF triples. While the authors argue the ben-
efits of of this approach for query processing, there are important
scalability concerns: memory requirements scale linearly with data
size and for 6M triples (the largest dataset evaluated) the system
requires 8GB of memory. Accordingly, for, say, the 100M LUBM
dataset they would require approximately 120GB of memory. Our
disk-based store scales without such requirements.

Huang et al. [10] focus on storage and query execution for clus-
tered RDF databases with datasets distributed using graph partition-
ing algorithms and queries split into chunks that can be executed in
parallel. Our work focuses on a centralized setting.

6. CONCLUSIONS
In this paper, we introduced a novel representation and querying

mechanism for RDF data on top of relational databases. We in-
troduced DB2RDF, an innovative relational schema that deals with
RDF sparsity and schema variability. We showed that DB2RDF has
additional benefits during query processing including the reduction

of join operations for star queries. We also introduced an inno-
vative SPARQL query optimization technique and novel SPARQL-to-
SQL translation techniques, and we showed that these outperform
existing RDF stores on standard datasets and query workloads.

For future work, we are preparing a study on insertion, bulk load
and update performance and we are planning to extend our sys-
tem to support the SPARQL 1.1 standard (including property paths).
We are also planning to support inferencing, a topic we briefly dis-
cussed during the presentation of the LUBM benchmark.
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