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Abstract—Trust inference is an essential task in many real
world applications. Most of the existing inference algorithms
suffer from the scalability issue, making themselves computa-
tionally costly, or even infeasible, for the graphs with more than
thousands of nodes. In addition, the inference result, which is
typically an abstract, numerical trustworthiness score, might be
difficult for the end-user to interpret.

In this paper, we propose subgraph extraction to address these
challenges. The core of the proposed method consists of two
stages: path selection and component induction. The outputs of
both stages can be used as an intermediate step to speed up a
variety of existing trust inference algorithms. Our experimental
evaluations on real graphs show that the proposed method can
accelerate existing trust inference algorithms, while maintaining
high accuracy. In addition, the extracted subgraph provides an
intuitive way to interpret the resulting trustworthiness score.

I. INTRODUCTION

Trust inference, which aims to infer a trustworthiness score
from the trustor to the trustee in the underlying social network,
is an essential task in many real world applications including
e-commerce [1], peer-to-peer networks [2], mobile ad hoc
networks [3], etc.

To date, many trust inference algorithms have been pro-
posed, which can be categorized into two main classes (See
Section VI for a review): (a) path-based inference [4], [5], [6],
[7], [8] and (b) component-based inference [9], [10], [11], [12].

Despite their own success, most of the existing inference
algorithms have two limitations. The first challenge lies in
scalability - many existing algorithms become very time-
consuming, or even computationally infeasible for the graphs
with more than thousands of nodes. Additionally, some al-
gorithms assume the existence of a subgraph while how to
construct such a subgraph remains an open issue [8]. The
second challenge is the usability of the inference results.
Most, if not all, of the existing inference algorithms output
an abstract numerical trustworthiness score. This gives a
quantitative measure of to what extent the trustor should trust
the trustee, but gives few cues on how the trustworthiness
score is inferred. This usability/interpretation issue becomes
more evident when the size of the underlying graph increases,
since we cannot even display the entire graph to the end-users
(See Fig. 9 for an example).

In this paper, we propose subgraph extraction to address
these challenges. The core of our subgraph extraction consists

of two stages: path selection and component induction. In
the first (path selection) stage, we extract a few, important
paths from the trustor to the trustee. In the second (component
induction) stage, we propose a novel evolutionary algorithm to
generate a small subgraph based on the extracted paths. The
outputs of these two stages are then used as an intermediate
step to speed up the path-based inference and component-
based inference algorithms, respectively. Our experimental
evaluations on real graphs show that the proposed method can
significantly accelerate existing trust inference algorithms (up
to 2,400x speed-up), while maintaining high accuracy (P-error
is less than 0.04). In addition, the extracted subgraph provides
an intuitive way to interpret the resulting trustworthiness score
by presenting a concise summarization on the relationship
from the trustor to the trustee. To the best of our knowledge,
we are the first to propose subgraph extraction for trust
inference. We believe that our work can improve most of
the existing trust inference algorithms by (1) scaling up as
well as (2) delivering more usable (i.e., interpretation-friendly)
inference results to the end-users.

The rest of the paper is organized as follows. Section II
presents the detailed definition of the subgraph extraction
problem for trust inference. Section III and Section IV describe
the algorithms for the path selection stage and component
induction stage, respectively. Section V presents our exper-
imental setup and results. Section VI reviews the related
work of subgraph extraction and trust inference. Section VII
concludes the paper.

II. PROBLEM DEFINITION

Following the standard notations in the existing trust in-
ference algorithms, we model the trust relationships in social
networks as a weighted directed graph [13], [14]. The nodes
of the graph represent the participants in the network, and the
weight on each edge indicates the local trust value derived
from the historical interactions.

We then categorize the existing trust inference algo-
rithms into two major classes: path-based trust inference and
component-based trust inference.

Definition 1: Path-based trust inference.
Path-based trust inference includes the approaches, which are
started by the trustor, to evaluating the trustworthiness of the



trustee, through a set of paths from the trustor to the trustee
in the network.

Definition 2: Component-based trust inference.
Component-based trust inference includes the approaches,
which are started by the trustor, to evaluating the trustwor-
thiness of the trustee, through a connected component from
the trustor to the trustee in the network.

Let us first explain the differences between these two
classes. In path-based trust inference, trust is propagated
along a path, and the propagated trust from multiple paths
is combined to form a final trustworthiness score. In contrast,
there is no explicit concept of paths in component-based trust
inference. Instead, it takes the initial graph as input and treats
trust as, for example, random walks on a Markov chain [15].

As to the similarity, both classes belong to the subjective
trust metrics [11], where different trustors can form different
opinions on the same trustee. Accordingly, path-based trust
inference such as [4], [5], [6], [7], [8] and component-based
inference such as [9], [10], [11], [12] all belong to trust
inference algorithms. Although the main focus of this paper
is on the subjective metrics, our proposed subgraph extraction
can also be applied to the objective trust metrics.

Despite the success of most existing inference algorithms,
they share the scalability and usability limitations. To ad-
dress these issues, we propose subgraph extraction for trust
inference. The core of our subgraph extraction consists of
two stages. The first stage, which serves for path-based trust
inference, selects a set of paths from the trustor to the trustee.
The second stage aims to produce a connected component
between the trustor and the trustee for component-based trust
inference. In addition, the second stage of our subgraph
extraction produces a relatively small subgraph which can be
clearly displayed and help the end-user better understand the
inference result.

We now formally define the subgraph extraction problem for
trust inference. In accordance to the corresponding two stages,
the problem is divided into two subproblems: path selection
problem and component induction problem.

Definition 3: Path Selection Problem.
Given: a weighted directed graph G(V,E), two nodes s, t ∈

V , and an integer K;
Find: a set C with K paths from s to t that minimizes the

error function f(C).
Definition 4: Component Induction Problem.
Given: a set C of paths from s to t, and an integer N ;
Find: an induced component H(V ′, E′) with at most N

edges that minimizes the error function g(H), where
V ′ ⊆ {v|(u, v) ∈ P or (v, u) ∈ P, P ∈ C} and
E′ ⊆ {e|e ∈ P, P ∈ C}.

We next discuss the error function in the definitions. The
error function f(C) in Definition 3 indicates the goodness of
the extracted paths, and f(C) reaches its minimum value when
C contains all the possible paths from s to t. Similarly, the
error function g(H) in Definition 4 reaches its minimum value
if H = G. In this paper, we use P-error, which is defined as

Algorithm 1 KS algorithm. (See the appendix for the details)
Input: Weighted directed graph G(V,E), two nodes s, t ∈ V ,

and a parameter K of path number
Output: Set C with K paths from s to t

1: C = k-shortest(G, s, t, K)
2: return C

follows, as the error function for both subproblems, i.e., f = g
= P-error.

Definition 5: P-error.
For a given trustor-trustee pair, the error function P-error is
defined as

P − error = |psub − pwhole|,

where psub is the trustworthiness score inferred from the
subgraph, and pwhole which serves as a ground truth, is the
trustworthiness score inferred from the whole graph.

III. PATH SELECTION

In the path selection stage, we aim to extract a few paths
from the trustor to the trustee as an intermediate step to speed
up path-based trust inference algorithms. These extracted paths
will also serve as the input for the component induction stage.

There are two preprocessing steps in our extraction method.
First of all, trust is interpreted as the probability by which the
trustor expects that the trustee will perform a given action.
This interpretation of trust is adopted by many existing trust
inference algorithms, and it allows trust to be multiplicatively
propagated along a path [16]. Second, we transform probabil-
ity into weight by negative logarithm. Namely, the local trust
value on the edge e is interpreted as probability p(e), and the
probability p(e) is transformed to weight w(e) = −log(p(e)).
Based on these two steps, the weight of a path P can be
presented as

w(P ) =
∑
e∈P

−log(p(e)) = −log(
∏
e∈P

p(e)) = −log(Pr(P )).

As a result, finding a path of high trustworthiness in the
original network is equivalent to finding a short path in the
transformed network. We will use this transformed weighted
graph G(V,E) as the input of our method.

Then, the path selection problem becomes to extract top-k
short paths from the trustor to the trustee in the transformed
graph G(V,E). Many existing algorithms can be plugged into
this stage, such as Yen’s k-shortest loopless paths (KS) [17],
path sampling (PS) [18], etc. In our experiments, we found
that KS algorithm performs best even if the multiplicative
property of the interpretation does not hold, and we therefore
recommend KS in this stage. A brief skeleton of the KS
algorithm is shown in Algorithm 1, and the detailed algorithms
for KS and PS are presented in the appendix for completeness.

A. Algorithm Analysis

The worst-case time complexity of KS is O(K|V |(|E| +
|V |log|V |)), which is known as the best result to ensure that
k-shortest loopless paths can be found in a directed graph [19].



Algorithm 2 EVO algorithm.
Input: Set C of paths from s to t and the directly induced

component Gc(V c, Ec), as well as a constraint N of the
edge number

Output: Induced component H(V ′, E′) with at most N edges
1: define 0/1 vector B of size |Ec| where each element in B

stands for the existence of a corresponding edge in Gc

2: initialize m vectors S ← {B1, B2, ..., Bm}, with at most
N 1-bits for each vector

3: while iter > 0 do
4: for each vector Bi in S do
5: repeat
6: mutate Bi to Bi+m with mutation probability

1/|Ec|
7: until the number of 1-bits in Bi+m 6 N
8: end for
9: compute P-error results for the 2m vectors

{B1, B2, ..., B2m}
10: S ← the best m vectors from the 2m ones
11: iter ← iter - 1
12: end while
13: Bfinal ← the best vector in S
14: return the corresponding component H(V ′, E′) of

Bfinal

However, the actual wall-clock time of KS on many real graphs
is often much better than such worst case scenario [20]. In fact,
based on our experiments, we find that it empirically scales
near linearly wrt the graph size |V | in the chosen datasets.

IV. COMPONENT INDUCTION

In the component induction, we take the output of path
selection stage (i.e., a set of K paths) as input, and output
a small connected component from the trustor to the trustee.
The output of the component induction stage not only acts
as an intermediate step to speed up component-based trust
inference algorithms, but also helps to improve the usability of
trust inference by interpreting the inference results for the end-
users. Notice that although our upcoming proposed algorithm
EVO could also be applied on the whole graph, we do not
recommend it in practice for the following two reasons: (1)
most trustworthy paths have already been captured by the path
selection stage (i.e., KS, etc) , and (2) applying EVO on the
whole graph would cost more memory and time to achieve
high accuracy. We will present more detailed experimental
evaluations to validate this in the next section.

In general, our proposed EVO algorithm (shown in Algo-
rithm 2) belongs to the so-called evolutionary methods [21]. It
aims to minimize P-error under the constraint of edge number.
The input component Gc(V c, Ec) is directly induced from the
set C of paths from s to t, where V c = {v|(u, v) ∈ P or
(v, u) ∈ P, P ∈ C} and Ec = {e|e ∈ P, P ∈ C}. There are
two implicit parameters in the algorithm, i.e., the initial vector
number m and iteration number iter.

We now explain EVO in detail. The first step of EVO is
to establish a one-to-one correspondence between the edges
in Gc and the elements in vector B. Each element of B is a
0/1 bit where 1 indicates that the corresponding edge exists
and 0 indicates otherwise. The vector has exactly |Ec| bits
where |Ec| is the edge number of Gc. In the second step,
the algorithm generates m vectors B1, B2, ..., Bm, and each
of them has at most N 1-bits. In our implementation, we
apply a constant-time search in C to find a subset of paths
with minimized P-error. In the following steps, EVO adopts
mutation on each of these vectors to separately generate m
new vectors Bm+1, Bm+2, ..., B2m. In the mutation from Bi

to Bi+m, each bit of Bi is changed with probability 1/|Ec|.
If the resulting vector has more than N 1-bits, the mutation
operation is redone. The error function, which is P-error in our
case, is then computed on each of these 2m vectors, and the
m vectors with smallest P-error are kept to the next iteration.
For efficiency, the P-error computation on vector B herein
means computing the P-error between Gc(V c, Ec) and the
component corresponding to the vector B. Namely, we use
the input component Gc(V c, Ec) as an approximation of the
ground truth in this stage.

A. Algorithm Analysis

The time complexity of EVO is summarized in the following
lemma, which basically says that the expected time complexity
of EVO scales linearly wrt both initial vector number m and
iteration number iter.

Lemma 1: The average-case time complexity of EVO is
O(iter ·m(|Ec|/N + θ)), where θ is the time complexity of
the error function computation.
Proof: In the mutation step of EVO, with mutation probability
1/|Ec|, the expected number of bit changes is 1. This step is
expected to be redone only when the number of 1-bits is N
and the bit change is from 0 to 1. Under this condition, the
probability of bit change from 0 to 1 is (|Ec| − N)/|Ec|.
Therefore, the expected iteration number of the mutation step
is |Ec|/N . Therefore, the whole expected time complexity of
EVO is O(iter(m·|Ec|/N+mθ)) = O(iter·m(|Ec|/N+θ)),
which completes the proof. �

V. EXPERIMENTS

A. Experimental Setup

Before presenting the experimental results, we first de-
scribe the datasets and the representatives of path-based and
component-based trust inference algorithms. All algorithms
are implemented in Java, and have been run on a T400
ThinkPad with 1280m jvm heap space. Few other activities
are done during the experiments.

1) Datasets Description: We use the advogato1 datasets
in our experiments, because advogato is a trust-based social
network and it contains multilevel trust assertions. There are
four levels of trust assertions in the network, i.e., ‘Observer’,
‘Apprentice’, ‘Journeyer’, and ‘Master’. These assertions can

1http://www.trustlet.org/wiki/Advogato dataset.



TABLE I
HIGH LEVEL STATISTICS OF ADVOGATO DATASETS.

Graph Nodes Edges Avg. degree Avg. clustering [22] Avg. diameter [23] Date
advogato-1 279 2,109 15.1 0.45 4.62 2000-02-05
advogato-2 1,261 12,176 19.3 0.36 4.71 2000-07-18
advogato-3 2,443 22,486 18.4 0.31 4.67 2001-03-06
advogato-4 3,279 32,743 20.0 0.33 4.74 2002-01-14
advogato-5 4,158 41,308 19.9 0.33 4.83 2003-03-04
advogato-6 5,428 51,493 19.0 0.31 4.82 2011-06-23

be mapped into real numbers in [0,1]. In our experiments, we
map ‘Observer’, ‘Apprentice’, ‘Journeyer’, and ‘Master’ to 0.1,
0.4, 0.7, and 0.9, respectively. The statistics of the datasets is
shown in Table I.

2) Trust Inference Representatives: To evaluate our sub-
graph extraction method, we need to apply trust inference
algorithms on the whole graph and on our extracted subgraph
to compare their effectiveness and efficiency. We chose Cert-
Prop [7] as the representative of path-based inference algo-
rithms, and Appleseed [11] as the representative of component-
based inference algorithms.

P-error computation in CertProp needs to first compute the
ground truth pwhole by finding all paths from the trustor to
the trustee in the whole graph. This computation, however,
easily causes the overflow of the jvm heap space even on
the advogato-1 graph. Following the suggestions in the orig-
inal CertProp [7], we apply the fixed search strategy and
search all paths whose length is not longer than seven as an
approximation of the ground truth. For CertProp, we define
collapsed samples as the trustor-trustee pairs of which the P-
error computation either exceeds the range of Java.lang.Double
or runs out of the jvm heap space. We randomly select 100
node pairs out of 122 samples, where the rest 22 of them are
collapsed samples. Our experimental results are all based on
the average of these 100 samples. Notice that, as discussed
in the path selection section, the multiplicative property of
the probability interpretation does not hold in CertProp. As to
Appleseed, we apply linear normalization on the outputs, since
the algorithm can produce arbitrary trustworthiness scores.

B. Experimental Results
We now present the experimental results of our subgraph

extraction method. In our experiments, the effectiveness, effi-
ciency comparisons, and interpretation results are all based on
the advogato-1 graph, as we found CertProp on the whole
graph becomes computationally infeasible on all the other
larger datasets. We evaluate the scalability of our method using
all the datasets (i.e., advogato-1 to advogato-6). As for EVO,
we set m = 5 and iter = 10 unless otherwise specified. The
edge constraint N is set as K/2.

1) Effectiveness: For effectiveness, we first study how
CertProp and Appleseed perform on the KS subgraph (the
output of path selection stage) and EVO subgraph (the output
of component induction stage), respectively. The results are
shown in Fig. 1. We can observe that all the P-error values
of CertProp and Appleseed are less than 0.04, indicating that
our extracted subgraphs, which are based on a small set of
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Fig. 1. Effectiveness of our subgraph extraction method with edge number
constraint N = K/2. In all cases, the P-error is less than 0.04.
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Fig. 2. Comparison of EVO on KS vs. EVO on the whole graph with edge
number constraint N = K/2. EVO on KS outperforms EVO on the whole
graph.

carefully selected paths and an evolutionary strategy, provide
high accuracy for the trust inference algorithms.

Remember that the proposed EVO is always applied on the
output of the path selection stage (referred to as ‘EVO+KS’).
Here, for comparison purpose, we also apply EVO on the
entire graph (referred to as ‘EVO+whole graph’). With the
same parameter setting, the results are shown in Fig. 2. It can
be seen that EVO on KS outperforms EVO on the whole graph.
The reason is as follows. As an evolutionary algorithm, EVO
(either on KS or on the entire graph) finds a local minima. By
restricting the search space to those highly trustworthy paths
(i.e., the output of KS), it converges to a better local minima
in terms of P-error.

Finally, to compare EVO with existing component induction
algorithms, we implement the Monte Carlo pruning (MC)
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Fig. 3. Comparison of different component induction algorithms with edge
number constraint N = K/2. EVO outperforms the existing component
induction algorithms.
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method [24] and the proximity extraction (PE) method [25],
and plot the results in Fig. 3. Again, we can see that EVO
outperforms both MC and PE wrt P-error. In fact, MC in-
duces a component by successively deleting edges (edge-level
component induction), while PE only selects a smaller set of
paths (path-level component induction). Our EVO algorithm
combines these two levels of component induction by search-
ing a smaller set of paths in the initial step and then evolving
the resulting component on the edge level.

2) Efficiency: First, we compare the different algorithmic
choices in the path selection stage. To this end, we compare
the wall-clock time of KS with an alternative path selection
algorithm path sampling (PS) [18]. The results are shown in
Fig. 4. Note that the y-axis is of log scale. As we can see from
the figure, although PS is slightly faster than KS when K = 5,
the wall-clock time of PS is much longer than that of KS when
K is greater than 30. For example, the wall-clock time of PS
is more than 170x longer than that of KS when K = 100.
Therefore, we recommend using KS for path selection.

Next, we study the computational savings by applying the
proposed subgraph extraction as the intermediate steps for
the existing trust inference algorithms. To this end, we report
the wall-clock time of CertProp on the output of the path
selection stage, and Appleseed on the output of the component
induction stage, respectively. The results are shown in Fig. 5
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Fig. 5. The average wall-clock time of CertProp on KS and Appleseed on
KS+EVO. We achieve up to 2400x speed-up.
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Fig. 6. The average wall-clock time of EVO on KS and EVO on the whole
graph with edge number constraint N = K/2. EVO on KS is much faster.

where the y-axis is of log scale. Notice that the reported
time includes the wall-clock time of both subgraph extraction
and trust inference. In the figure, we also plot the wall-
clock time of CertProp and Appleseed on the entire graph for
comparison. We can see that our subgraph extraction method
saves the wall-clock time for both path-based trust inference
and component-based trust inference, especially for the former
one. For example, when K = 10, our subgraph extraction
method achieves up to 2,400x and 5.4x speed-up for CertProp
and Appleseed, respectively. Even when K grows to more
than 60, our method can still achieve 200-400x speed-up for
CertProp.

Next, we compare the efficiency between applying EVO
on KS and applying EVO on the whole graph. With N =
K/2, the results are shown in Fig. 6. As we can see, the
wall-clock time of EVO on KS (which includes the wall-clock
time of both EVO and KS) is much faster than EVO on the
whole graph. Together with the effectiveness results (Fig. 2),
we recommend running EVO on the KS subgraph in practice.

Finally, we evaluate how the parameters m and iter in EVO
affect the wall-clock time. In this experiment, we fix K =
20 and N = 10, and the results are shown in Fig. 7. We
can observe that the wall-clock time of EVO scales linearly
wrt iter for any fixed m, which is consistent with the time
complexity analysis shown before.
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3) Scalability: We now evaluate the scalability of our
method on datasets advogato-1 to advogato-6. Fig. 8 shows
the results, where the y-axis is of log scale. In this experiment,
we fix K = 10 and N = 5.

We can observe from the figure that even on the largest
graph of 5,428 nodes and 51,293 edges, KS can help to infer
the trustworthiness score within 25 seconds. In addition, KS
scales near linearly wrt the underlying graph size. As to EVO,
the wall-clock time stays stable in spite of the growth of the
graph size. The reason is that |Ec| scales near linearly to
K due to many overlapping edges, and N is set to K/2.
Consequently, |Ec|/N is close to a constant, and the time
complexity of EVO can be approximated to O(iter ·m · θ).

4) Usability/Interpretation: Another important goal of the
proposed EVO is to improve the usability in trust inference by
interpreting the inferred trustworthiness score for end-users.
An illustrative example is shown in Fig. 9. The whole graph
and the induced KS subgraph by the path selection stage are
also plotted for comparison.

From the figures we can see that the whole graph is hard for
interpretation. As to the KS subgraph, although the number of
edges has significantly decreased compared with the original
whole graph, there are still some redundant edges which might
diverge end-users’ attention. On the other hand, the EVO
subgraph only presents the most important participants and

(a) The original whole graph

(b) KS subgraph with K = 20. The paths are from ‘Adrian’
(the leftmost node) to ‘terop’ (the rightmost node).

Adrian

timj

raph

cannam

terop0.9

0.7

0.7
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0.7

(c) EVO subgraph with N = 10 on KS-20. The component
is from ‘Adrian’ to ‘terop’.

Fig. 9. The interpretation example of the whole graph, KS-20, and EVO-10
on KS-20.

their trust opinions, providing a much clearer explanation on
how the trustworthiness score is inferred.

VI. RELATED WORK

We review the related work in this section, which can
be categorized into two parts: trust inference algorithms and
subgraph extraction.

A. Trust Inference

We categorize existing trust inference algorithms into two
main classes: path-based trust inference and component-based
trust inference.

In the first class of path-based inference, Wang and
Singh [5], [26] as well as Hang et al. [7] propose operators
to concatenate trust along a path and aggregate trust from
multiple paths. Liu et al. [6] argue that not only trust values
but social relationships and recommendation role are important
for trust inference. However, these algorithms are only suitable
for small networks due to their complexity. Some other path-
based trust inference algorithms, such as [4], [8], assume the
existence of an extracted subgraph while how to construct such
a subgraph remains an open issue [8].

In the second class of component-based inference, Eigen-
Trust [2] tries to compute an objective trustworthiness score



for each node in the graph. In contrast to EigenTrust, our main
focus is to provide support for subjective trust metrics where
different trustors can form different opinions on the same
trustee. Existing subjective trust algorithms, including [9],
[10], [11], [27], [28], take the initial graph as input and treat
trust as random walks on a Markov chain or on a graph. Our
subgraph extraction method not only can speed up many of
these algorithms but also can provide interpretive result which
is not considered by the existing algorithms.

Overall, our subgraph extraction is motivated to address the
two common challenges (i.e., scalability and usability) shared
by most of these existing trust inference algorithms.

B. Subgraph Extraction

Several end-to-end subgraph extraction algorithms are de-
veloped to solve different problems.

In the field of graph mining, Faloutsos et al. [29] refer
to the idea of electrical current where trust relationships are
modeled as resistors, and try to find a connection subgraph
that maximizes the current flowing from source to target. Later,
Tong et al. [30] generalize the connection subgraph to directed
graphs and use the subgraph to compute proximities between
nodes. Similar to Tong et al., Koren et al. [25] also try to
induce a subgraph for proximity computation. In addition,
Koren et al. search the k-shortest paths to provide a basis
for measuring the proximity.

Recently, several algorithms are proposed for reliable sub-
graph extraction. Among them, Monte Carlo pruning [24]
measures the relevance of each edge by Monte Carlo sim-
ulations, and tends to remove the edge of lowest relevance
one by one. The most related work is perhaps the randomized
Path Covering algorithm [18] which also consists of two
stages of path sampling and subgraph construction. However,
both Monte Carlo pruning and Path Covering tend to find a
subgraph with highest probability to be connected, while we
aim to find a subgraph to address the scalability and usability
issues in trust inference.

VII. CONCLUSIONS

In this paper, we have proposed subgraph extraction to
address the scalability and usability challenges of existing
trust inference algorithms. The core of our subgraph extraction
has two stages, and the outputs of both stages can be used
as an intermediate step to speed up a variety of existing
trust inference algorithms. Our experimental evaluations on
real graphs show that the proposed method can significantly
accelerate existing trust inference algorithms (up to 2,400x
speed-up), while maintaining high accuracy (P-error is less
than 0.04). In addition, the extracted subgraph provides an
intuitive way to interpret the inferred trustworthiness score for
end-users. Future work includes incorporating distrust in the
subgraph extraction.
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APPENDIX

To find K short paths from graph G(V,E) in the path selec-
tion stage, many existing algorithms can be used. We consider
two representative algorithms from the literature. Here, we
present the detailed algorithm description for completeness.

The first algorithm is Yen’s k-shortest loopless paths (KS)
algorithm [17], which is shown in Algorithm 3.

Algorithm 3 Detailed KS algorithm.
Input: Weighted directed graph G(V,E), two nodes s, t ∈ V ,

and a parameter K of path number
Output: Set C with K paths from s to t

1: X ← shortest path from s to t
2: C ← shortest path from s to t
3: while |C| < K and X ̸= Ø do
4: P ← remove the shortest path in X
5: d ← the deviation node of P
6: for each node v between d (inclusive) and trustee t

(exclusive) in P do
7: pre ← subpath from trustor s to v in P
8: post ← the deviated shortest path from v to t
9: combine pre and post, and add it to X

10: end for
11: C ← C + the shortest path in X
12: end while
13: return C

In the algorithm, we use Dijkstra’s algorithm for finding
a shortest path. All the computed paths are loopless by
temporarily removing visited nodes. The key idea of the KS
algorithm is deviation. The deviation node d of path P is the
node that makes P deviate from existing paths in the candidate
set C. For each node v between d (inclusive) and trustee t
(exclusive) in P , the deviated shortest path from node v to t
is computed by temporarily removing the edge starting at v in
P . The computed deviated shortest path post and the subpath
pre (the path from s to v in P ) are combined to form a possible
path candidate. For the nodes before d, possible shortest paths
are already computed and included in X . Based on deviation,
KS finds the K shortest paths from trustor s to trustee t one
by one. Following Martins and Pascoal’s implementation [20],
we compute the deviated shortest path from deviation node d
to the trustee in a reverse order.

Algorithm 4 PS algorithm.
Input: Weighted directed graph G(V,E), two nodes s, t ∈ V ,

and a parameter K of path number
Output: Set C with K paths from s to t

1: C ← shortest path from s to t
2: while |C| < K do
3: re-decide all the edges in E
4: for each path P in C do
5: if P is decided as true then
6: F ← F + P
7: end if
8: end for
9: while F ̸= Ø do

10: re-decide the most overlapped edge in F as failed
11: remove failed paths from F , if there are any
12: end while
13: P ← the shortest path among the non-failed edges from

s to t
14: if P ̸= Ø then
15: C ← C + P
16: end if
17: end while
18: return C

The other algorithm is the randomized algorithm path
sampling (PS) [18], which is proposed for the most reliable
subgraph problem [24]. While PS is proposed for undirected
graphs, trust relationships in social networks should be di-
rected as trust is asymmetric in nature [31]. Therefore, we
adapt PS (as shown in Algorithm 4) for a directed graph.

PS considers the input graph as a Bernoulli random
graph [32], and the algorithm is based on the edge decision
of this random graph. An edge is randomly decided as true
with probability p(e), and a path is decided as true if all the
edges on the path are decided as true. At the beginning of each
iteration, all the edges of the graph are re-decided, and these
graph decisions provide opportunities for distrust information
to be contained. Like KS, PS first adds a shortest path into
candidate set C. PS then tries to find a graph decision based
on which none of the paths in C is true. To avoid the situation
when this graph decision is hardly found, PS stores the true
paths in C to a temporary set F , and deliberately fails the most
overlapping edges in F until none of the paths in F is true.
Finally, based on the results of graph decision and edge failing,
PS finds the shortest path P among the non-failed edges from
trustor s to trustee t, and adds it to C. The algorithm ends
until K paths are found.

PS allows some distrust information to be incorporated into
the extracted subgraph, which could in turn lower the P-error
based on our experiments. However, the time complexity of
PS is difficult to estimate, since the wall-clock time depends
on the graph density. In addition, as shown in our experiments,
the wall-clock time of PS is especially long when K becomes
sufficiently large. We conjecture that PS can be used in dense
graphs where numerous paths exist between node pairs.


